Коэффициент линейного расширения твердого сплава вк8. Твердые сплавы

Твёрдые сплавы в настоящее время являются распространенным инструментальным материалом, широко применяемым в инструментальной промышленности. За счет наличия в структуре тугоплавких карбидов твёрдосплавный инструмент обладает высокой твёрдостью HRA 80-92 (HRC 73-76), теплостойкостью (800-1000°C), поэтому ими можно работать со скоростями, в несколько раз превышающими скорости резания для быстрорежущих сталей. Однако, в отличие от быстрорежущих сталей, твёрдые сплавы имеют пониженную прочность (σ = 1000-1500 МПа), не обладают ударной вязкостью. Твёрдые сплавы нетехнологичны: из-за большой твёрдости из них невозможно изготовить цельный фасонный инструмент, к тому же они ограниченно шлифуются - только алмазным инструментом, поэтому твёрдые сплавы применяют в виде пластин, которые либо механически закрепляются на державках инструмента, либо припаиваются к ним.

Таблица 2. Спечённые твёрдые сплавы, применяемые в современной мировой промышленности

Вольфрам - тугоплавкий твердый металл серого цвета, химический элемент под номером 74 в таблице Менделеева, обладает следующими физическими свойствами: плотность - 19,3 г/см3, температура плавления - 3422°С, температура кипения - более 5500°С.

Среди разнообразной продукции из вольфрама (проволока, прутки, электроды, листы) также широкое применение получил и вольфрамовый порошок. Основные марки порошка вольфрама - ПВН (порошок вольфрамовый низкоактивный), ПВВ (порошок вольфрамовый высокоактивный), ПВТ (порошок вольфрамовый технический), ВП. Данная продукция выпускается в соответствии с ТУ 48-19-72-92 "Порошок вольфрамовый. Технические условия". Средний диаметр зерна для порошка вольфрамового ПВН должен составлять 3,5-6 мкм, ПВВ - 0,8-1,7 мкм, ПВТ - 3,5-6 мкм. При этом не более 40% зерен вольфрама порошка ПВН могут иметь размер более 4 мкм.

Как правило, вольфрамовый порошок служит сырьем для дальнейшего производства компактного вольфрама. Порошок вольфрамовый применяется в качестве легирующей добавки или основного компонента быстрорежущих и инструментальных сталей, а также износостойких и жаропрочных сплавов (например, стеллитов).

Рис. 3. Вид порошка для сплава ВК8 при многократном увеличении

Рис. 4. Деталь, изготовленная из ВК8

Карбид вольфрама - соединение тугоплавкого металла вольфрам (W) с углеродом (C). Всего существует два карбида - WC и W2C. Основными достоинствами карбидов вольфрама являются высокая твердость и тугоплавкость. Карбид WC сохраняет повышенную твердость и при высоких температурах. Карбид вольфрама - основа твердых сплавов типа ВК (вольфрамокобальтовые).

Карбиды вольфрама являются основой для производства различных твердых сплавов. Среди наиболее распространенных твердых сплавов стоит выделить сплавы марки ВК, а именно ВК8. Как правило, твердые сплавы получают методами порошковой металлургии из смеси карбида тугоплавкого металла с порошком металла-связки. Так, например, химическое или механическое смешивание карбида вольфрама с порошком кобальта дает смесь ВК. В дальнейшем проводится прессование смеси и ее спекание для получения твердого сплава.

Вольфрамокобальтовые сплавы состоят из карбида вольфрама (карбид - химическое соединение металла с углеродом, обладающее весьма высокой твердостью) и кобальта, служащего связкой. Сплав обозначается двумя буквами - ВК и цифрой, показывающей содержание кобальта в процентах. Так, ВК8 означает вольфрамокобальтовый сплав с содержанием кобальта 8 % и карбида вольфрама - 92 %. Чем больше в сплаве кобальта, тем он мягче и прочнее. Сплавы вольфрамокобальтовой группы предназначены в основном для обработки чугуна, цветных металлов и их сплавов и неметаллических материалов.

Таблица 3. Свойства вольфрамовых твёрдых сплавов «Вириал» в сравнении со стандартным твёрдым сплавом ВК8

Из смеси ВК8 или ВК6 получают одноименные твердые сплавы, которые содержат 8% и 6% кобальта соответственно.

Химический состав вольфрамо-кобальтовой смеси ВК8 (массовая доля, %): кобальт - 7,5-8,1, кислород, не более – 0,5, углерод общий - 5,30-5,65, углерод свободный, не более – 0,1, железо – 0,3.

Массовая доля основных компонентов пластифицированной смеси (пластификатор ПЭГ): кобальт - 7,3-7,9, кислород, не более – 1,5, углерод общий - 6,5-7,0, углерод свободный – 0,1, железо, не более – 0,3.

Области применения. Изделия из вольфрамовых твердых сплавов находят применение в качестве пар трения подшипников скольжения и торцовых уплотнений, деталей запорной арматуры, штампов, пресс-форм и др. Сплав ВК8 применяется для чернового строгания при неравномерном сечении среза и прерывистом резании, строгании, чернового фрезерования, сверления, чернового рассверливания, чернового зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов. Твердые сплавы группы ВК активно используются при изготовлении бурового и режущего инструмента. Существуют резец ВК8, сверло ВК8; фреза ВК8 и другие режущие инструменты, сделанные с применением твердого сплава ВК. Пластины твердосплавные ВК8 также нашли применение в промышленности.

Титановольфрамокобальтовые сплавы состоят из карбидов вольфрама и титана, сцементированных кобальтом. Марки сплавов обозначаются буквами Т (титан) и К (кобальт). Цифры после букв показывают соответственно содержание карбида титана и кобальта в процентах. Остальная часть состава приходится на карбид вольфрама. С увеличением в сплаве содержания карбида титана прочность его уменьшается, а с увеличением количества кобальта - увеличивается.

Т15К6 - сплав двухкарбидный твердый титано-вольфрамовой группы, по сути - композиционный материал. Массовая доля основных компонентов в смеси порошков, %: карбид вольфрама – 79, карбид титана – 15, карбид тантала – отсутствует, кобальт – 6. Этот сплав наиболее подходит для обработки стали, но без прерывистости резания, т. е. для фрез, для строгания не подходит. Кобальта, отвечающего за прочность, маловато.

Предел прочности при изгибе, Н/мм2 (кгс/ мм2), не менее 1176*(120). Твёрдость, HRA, не менее 90,0. Плотность, х103 кг/м2 (г/см2) = 11,1-11,6.

Применение. Титановольфрамовый твердый сплав Т15К6 предназначен для обработки вязких материалов: стали, латуни. Сплав применяется для обработки материалов резанием – получернового точения при непрерывном резании, чистового точения при прерывистом резании, нарезания резьбы токарными резцами и вращающимися головками, получистового и чистового фрезерования сплошных поверхностей, рассверливания и растачивания предварительно обработанных отверстий, чистового зенкерования, развертывания и других аналогичных видов обработки углеродистых и легированных сталей.

Список использованной литературы:

1. Борисов Ю.С., Кулик A.Я., Мнухин A.С. Газотермическое напыление композиционных порошков. - Л.: Машиностроение, 1985. - 197 с.

2. Казаков В.Г. Тонкие магнитные пленки // Соросовский образовательный журнал, 1997, №1, с. 107-114.

3. Кіндрачук М.В., Лабунець В.Ф., Пашечко М.І., Корбут Є.В. Трибологія: підручник/ МОН. – Київ: НАУ-друк, 2009. – 392 с. (укр). ISBN 978-966-598-609-6.

4. Конструкционные материалы. Под ред. Б.Н. Арзамасова. Москва, изд «Машиностроение», 1990.

5. Материаловедение. А.Е. Лейкин, Б.И. Родин, Москва, 1971, Изд. “Высшая школа”.

6. Мышкин Н.К., Петроковец М.И. Трение, смазка, износ. Физические основы и технические приложения трибологии. - М.: ФИЗМАТЛИТ, 2007. -368 с. ISBN 978-5-9221-0824-9.

7. Производство и литье сплавов цветных металлов. Юдкин В.С. - М., 1967.

8. Словарь-справочник по трению, износу и смазке деталей машин / В.Д. Зозуля, Е.Л. Шведков, Д.Я. Ровинский, Э.Д. Браун.- Киев: Наукова думка, 1990. - 264 с.

9. Термодинамика сплавов. Вагнер К. - Москва, 1997.

10. Технология и свойства спеченных твердых сплавов и изделий из них - Панов B.C., Чувилин A.M. - МИСИО, 2001.

11. Технология конструкционных материалов. Под ред. А.М. Дальского. – Москва. Изд. «Машиностроение», 1985.

12. Технология металлов и конструирование материалы. В.М. Никифоров. - Москва, 1968, Изд. “Высшая школа”.

13. Технология металлов и конструирование материалы. В.М. Никифоров. - Москва, 1968, Изд. “Высшая школа”.

Твёрдые сплавы получают методами порошковой металлургии в виде пластин. Основными компонентами таких сплавов являются карбиды вольфрама (WC), титана (TiC) и тантала (ТаС), мельчайшие частицы которых соединены сравнительно мягким и менее тугоплавким кобальтом. Карбиды придают сплаву высокую твёрдость и теплостойкость, кобальт - прочность на изгиб.

Твердые сплавы имеют высокую твердость - 72...76 HRC и теплостойкость до 850... 1000 °С. Это позволяет работать со скоростями резания в 3 - 4 раза большими, чем инструментами из быстрорежущих сталей.

Применяемые в настоящее время твердые сплавы делятся на:

  • Вольфрамовые сплавы группы ВК : ВК3, ВК3-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозначении цифра показывает процентное содержание кобальта. Например, обозначение ВК8 показывает, что в нем 8 % кобальта и 92 % карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелкозернистая структура;
  • Титановольфрамовые сплавы группы ТК : Т5К10, Т15К6, Т14К8, ТЗОК4, Т60К6 и др. В условном обозначении цифра, стоящая после буквы Т, показывает процентное содержание карбидов титана, после буквы К - кобальта, остальное - карбиды вольфрама;
  • Титанотанталовольфрамовые сплавы группы ТТК : ТТ7К12, ТТ8К6, ТТ20К9 и др. В условном обозначении цифры, стоящие после буквы Т, показывают процентное содержание карбидов титана и тантала, после буквы К - кобальта, остальное - карбиды вольфрама.

Твердые сплавы выпускаются в виде стандартизованных пластин, которые припаиваются, или крепятся механически к державкам из конструкционной стали.

Правильным выбором марки твердого сплава обеспечивается эффективная эксплуатация режущих инструментов . Для конкретного случая обработки сплав выбирают исходя из оптимального сочетания его теплостойкости и прочности. Например, сплавы группы ТК имеют более высокую теплостойкость, чем сплавы ВК. Инструменты, изготовленные из этих сплавов (ТК), могут использоваться при высоких скоростях резания, поэтому их широко применяют при обработке сталей.

Инструменты из твердых сплавов группы ВК применяют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при прерывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обусловлено повышенной прочностью этой группы твердых сплавов и невысокими температурами в зоне резания.

Такие сплавы используются также при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Кроме того, сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Сплавы группы ТТК занимают промежуточное положение между сплавами ТК и ВК. Сплавы ТТК по применимости - универсальны.

Основная область их применения - резание с очень большими сечениями срезаемого слоя, тяжёлыми ударами и малыми скоростями резания (строгание и долбление).

Сплавы с низким процентным содержанием кобальта (Т30К4, ВК3, ВК4) обладают высокой твёрдостью, малой прочностью на изгиб и меньшей вязкостью. Применяются для чистовых операций. Наоборот, сплавы с большим содержанием кобальта (ВК8, Т14К8, Т5К10) являются более вязкими, обладают высокой прочностью на изгиб и применяются при снятии стружек большого сечения на черновых операциях.

Работоспособность твердых сплавов значительно возрастает при нанесении на них износостойких покрытий.

Для армирования бурового породоразрушающего инструмента используют спеченные вольфрамокобальтовые сплавы марки ВК (табл. 2.25 ).

Преимущества твердых сплавов ВК :

  • большая твердость (до 91 HRC)
  • высокое сопротивление износу при нагреве до 1000 °С
  • неподверженность заметной пластической деформации
  • большая прочность на сжатие
  • отсутствие упругой деформации.

Недостатки:

  • малый предел прочности на изгиб и растяжение
  • небольшая ударная вязкость

Спеченный сплав изготавливают из порошковой смеси карбида вольфрама путем прессовки ее в специальных графитовых пресс-формах и спекания при температуре ниже температуры плавления карбидов в соответствии с требованиями ГОСТ 388-74. Цифры в марке сплава соответствуют процентному содержанию кобальта.

Твердость сплава возрастает с увеличением содержания карбида вольфрама и уменьшением размеров его зерен. Предел прочности при изгибе повышается с увеличением содержания кобальта и размера зерен вольфрама. При увеличении содержания кобальта возрастает сопротивление сплава сжатию, максимум достигается при 6% Со, затем плавно снижается. Мелкозернистые сплавы обладают более высокой прочностью на сжатие, чем крупнозернистые. Ударная вязкость сплава растет с повышением содержания кобальта и увеличением зернистости.

При нагреве сплава в процессе работы уменьшаются его твердость, предел прочности на изгиб и сжатие. В интервале температур 20-200°С прочность твердого сплава на изгиб несколько растет, а с увеличением температуры до 900-1000°С - интенсивно падает, уменьшаясь в 2-2,5 раза.
Плотность твердых сплавов уменьшается с увеличением содержания кобальта, причем плотность мелкозернистых сплавов выше, чем крупнозернистых. Твердый сплав обладает высокой теплопроводностью, что способствует быстрому отводу тепла от режущих кромок и уменьшению их износа.

Соединение твердого сплава со сталью , т.е. резца с корпусом породоразрушающего инструмента, должно быть достаточно прочным, так как большое значение (2-4 раза) коэффициентов термического расширения сплава и стали приводит к возникновению при пайке (нагреве) термических напряжений, после охлаждения часто превосходящих предел прочности твердого сплава.

Таблица 2.25. Характеристика твердых сплавов

Марка сплава Содержание основных компонентов, % Физико-механические свойства
Карбид, вольфрама Кобальт Предел прочности при изгибе, МПа, не менее Плотность, г/см 3 Твердость HRC, не менее
ВКЗ 97 3 1100 15 - 15,3 89,5
ВКЗ - М 97 3 1100 15 - 15,3 91,0
ВК4 96 4 1400 14,9 - 15,2 89,5
ВК4 - В 96 4 1400 14,9 -15,2 88,0
ВК6 94 6 1500 14,6 - 15 88,5
ВК6 - М 94 6 1350 14.8 - 15,1 90,0
ВК6 - ОМ* 92 6 1200 14,7 - 15 90,5
ВК6 - В 91 6 1550 14,6 - 15 87,5
BK8 92 8 1600 14,4 - 14,8 87,5
ВК8 - В 92 8 1750 14,4 - 14,8 86,5
ВК8 - ВК 92 8 1750 14,5 - 14,8 87,5
ВК10 90 10 1650 14,2 - 14,6 87,0
ВК10 - М 90 10 1500 14,3 - 14,6 88,0
BK 10 - OM* 88 10 1400 14,3 - 14,6 88,5
ВК10 - КС 90 10 1750 14,2 - 14,6 85,0
BK11 - B 89 11 1800 14.1 - 14,4 86,0
ВК11 - ВК 89 11 1800 14,1 - 14,4 87,0
ВК15 85 15 1800 13,9 - 14,1 86,0
ВК20 80 20 1950 13,4 - 13.7 89,0
ВК20 - КС 80 20 2050 13,4 - 13,7 82,0
ВК20 - К 80 20 1550 13,4 - 13,7 79,0
ВК25 75 25 2000 12,9 - 13,2 82,0
*Содержит 2% карбида тантала.

С учетом основных физико-механических свойств среднезернистые и крупнозернистые малокобальтовые сплавы применяют для армирования инструмента, работающего в условиях безударных нагрузок или при малой их интенсивности (табл. 2.26 ). В частности, ими армируют коронки для вращательного и вращательно-ударного бурения и шарошечные долота, работающие в породах средней твердости.

Средне- и высококобальтовые сплавы используют для армирования инструмента, работающего в условиях ударных нагрузок, в частности, для коронок ударно-вращательного бурения с применением гидро- и пневмоударных машин и шарошечных долот, предназначенных для бурения пород высокой твердости. Эти сплавы обладают наибольшей прочностью, но они менее износостойкие.

Предел прочности резцов из твердых сплавов ВК при поперечном изгибе может быть существенно повышен путем их алмазного шлифования. Алмазное шлифование не создает поверхностных дефектов и обеспечивает максимальную прочность сплава; оно положительно влияет и на усталостные свойства. Так, предел прочности при изгибе и ударная вязкость у шлифованных образцов повышаются на 20-25%. Алмазное шлифование всей поверхности твердосплавной вставки увеличивает срок службы инструмента и стабильность его работы при эксплуатации.

Для армирования бурового инструмента изготавливаются следующие формы твердого сплава (ГОСТ 880 - 75):

Для оснащения буровых колонок к погружным пневмоударникам Г13, Г15
Для оснащения коронок гидроударного бурения Г55, Г57
Для армирования шарошечных долот Г25, Г26, Г54
Для армирования лопастных долот Г41
Для армирования коронок для вращательного и вращательноударного бурения Г42, Г51, Г53, Г62, Г63

Наплавочные твердые сплавы делятся на литые, зернистые и трубчато-зернистые. Они наносятся на поверхность инструмента газопламенной или электродуговой наплавкой.

Сплавы релит 3 и ТЗ применяют для армирования зубьев шарошечных и лопастных долот. Зернистый карбид вольфрама, из которого состоят эти сплавы имеет следующий химический состав: 95,5-96% W; 3,7-4% С; 0,06% свободного углерода и 0,02% примесей (Na, Ca, Si, Fe и др.). Микротвердость должна быть в пределах 20000-24000 МПа.

Таблица 2.26. Области применения твердых сплавов в бурении (ГОСТ 3882-74)

Область применения Марка сплава
Вращательное бурение эксплуатационных и геологоразведочных скважин, взрывных шпуров в монолитных и абразивных горных породах с f = 8 ВК6
Ударно-поворотное бурение шпуров в горных породах, твердых каменных углях с f = 8 ВК6-В
Бурение электро- и пневмосверлами углей, антрацитов, сланцев, калийных и каменных солей; бурение ручными и колонковыми электросверлами горных пород с f = 8; бурение шарошечными долотами ВК4-В
Вращательное бурение скважин и взрывных шпуров в трещиноватых абразивных породах с f = 8 ВК8
Шарошечное бурение взрывных скважин в твердых и очень твердых абразивных породах с f = 18 ВК8-ВК
Ударно-поворотное и ударно-вращательное бурение шпуров и скважин в твердых горных породах с f <14; шарошечное бурение скважин и шпуров в вязких, средней твердости и твердых абразивных породах с f <10 ВК11-ВК
Ударно-поворотное и ударно-вращательное бурение шпуров и скважин в очень твердых и абразивных горных породах с f <18 BK11-B
Ударно-поворотное и ударно-вращательное бурение шпуров и скважин в высшей степени твердых горных породах с f <20 ВК15
То же, при ударной нагрузке средней интенсивности ВК20
То же, при ударной нагрузке высокой интенсивности ВК20 и ВК25

Примечание: f - коэффициент крепости породы по шкале проф. Протодьяконова М. М.